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An Augmented Lagrangian Formulation for the Finite
Element Solution of Contact Problems

Joseph A. Lavderft and Robert L. 7zylo,'

Department of Civil Engineering.
University of California. Berkeley.

1. Introduction

While solutions to contact problems have been available for years [1]. tech-
niques applicable to a wide range of problems with a minimum amount of user
intervention have been quite limited. This is true not only of static contact
problems, but also in dynamic impact situations as well-

In this report, a study is first made of various frictionless, small deforma-
tion contact algorithms. The advantages and disadvantages of each are dis-
cussed. Next, the augmented Lagrangian solution method is presented in the
context of finite element contact problems. This discussion covers both theI

static and dynamic algorithms. The generality of the augmented Lagrangian
method is shown by examining how the other methods may be derived from it.
Several examples are presented, and comparisons are made to work done by
previous researchers. Finally. recommendations are made for future studies in
contact problems.

t Research Assistant
* Profemor and Chairman
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2. Contact Solution Algorithms

Contact solution algorithms are generally based upon either the classical

Lagrange procedure or the penalty function method. In the context of linear-

ized elasticity. finite element solutions can be viewed as the minimization of the

potential energy functional presented in equation (1).

ra = f W(g) dv - f pb ..udv - f F.>gdz (1)
D URI D BgB dB1UgDl

Where V is the stored energy function, pb is the body force vector, tis the sur-
face traction specified on the boundary and ju is the displacement field. The

integrals are taken over both bodies and their boundaries. Application of stan-

dard finite element procedures leads to equation (2). the discrete form of the

functional.

rI(u) = u u - u R (2)

Where K is the system stiffness matrix, f is the vector of nodal forces, and u is

the displacement vector of nodes in the mesh. In the case of finite element con-

tact problems. a further requirement states that penetration of the two bodies

does not take place.

( ,U _IB,). n 0=o (3)

Where IB and UIB e are the positions in either deformed body, taken over the

contact interface, and n is the normal between the bodies.

Application of equation (2) subject to the constraint of equation (3) is

equivalent to an optimization problem. which may be stated as:

minmize: fl(u) (4.a)

ith the constraint: geu = 0 (4.b)

The purpose of this report is to discuss solution schemes for the expressions

listed in equations (4).

2. 1. The Penalty Method

Optimization problems that involve constraints, such as those presented in

equation (4.b), are frequently converted to unconstrained problems by using

these constraint equations to establish relationships between the unknowns [2].

By writing equation (2) with the addition of a fictitious energy term, a new func-

tional is defined.

IT(u) = 11(u) + -ul gg u, where: > 0 (5)
2

The last term contains the constraint, gnu, times a penalty term. iz Because

.2- 7



solution to finite element problems involve the minimization of equation (5), the

answer will tend to have a small value for g u. Taking the first variation of (5) b

equation (6) is found.

6u tKu - 6u R + duigeu = 0 (6)

By the fundamental lemma of variational equations, this becomes:

[K + j.&gg]u = R (7)

Several comments are applicable to the penalty method. First, the correct

choice of the penalty parameter, 1A, is the essence of the algorithm. Since the

penalty approach satisfies the contact conditions only approximately, valid -..

results from equation (4) are highly dependent on the value of ji.

N(u)

iP

F Iure 1: The effect of the penalty term, one dimensional case.

In Figure 1. a plot of the two functionals is shown. The addition of the penalty

parameter to equation (2), as stated in equation (5). can be seen as rendering

the functional convex [3]. This is true even if 1(u) is not already convex, for

points near the solution. Also note that in Figure 2, the minimum of the func-

tional with the penalty term will approach the minimum of the functional

without the penalty term only as -.

Issues such as A-- bring forward a major problem with the penalty

method: the matrices used in the solution of the finite element problems may

exhibit poor numerical conditioning. While large penalty values insure a tighter .

tolerance for the constraint, these values make an accurate solution of the

linear system of equations much more difficult.

. . . . . .. . ... " .,
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Figure 2: The effect of increasing the penalty parameter.

The following problem will serve as a basis of comparison for the various

contact solution algorithms. This system consists of two springs connected in

series. One end is fixed, while at the other, a concentrated force is applied. The

, constraint requires that the displacements of nodes 1 and 2 remain equal. Fig-

ure 3 illustrates the system and external loading. By applying the penalty

method, the matrices corresponding to equation (7) are: ,

_ 2k -ko1 1 r1

This leads to a linear system of equations:

2k + -(k +, )1.JI 01(9

This system has the solution: k-Ju j

The exact solution is shown in equation (11).

k

L21 (i 1-4lZ- - oJ



k k q

U1  U2

y gap distance."

Figure 3: A sample finite element system.

Note that the condition number of the stiffness matrix can easily be found to

be:

x _ 3k + 2g +"/s +B/+ (a):-:-
cond(K) 12) =

3k+2A- V5k2 + - Bk+4 -2

As Figures 4 and 5 illustrate, increasing penalty values lead to more accu-

rate solutions, but they also lead to more poorly conditioned matrices., Because

of the extreme importance of jA, a natural question to ask is: how can an

optimal value for the penalty parameter /A be found?

In order to find an answer to this question, the errors involved in solution

of the finite element contact problem must be examined in some detail. Two

sources of error effect the accuracy of the penalty method: the large perturba-
tion that results from a small penalty parameter, and the rounding errors due

to large penalty values in finite precision arithmetic on the computer [4]. A

study of the perturbation errors is done first.

Applying the Sherman-Morrison formula to equation (7), the following
expression for the displacements by the penalty method is obtained.

up R (13)

The exact solution can be found by letting p-*-:

U" K-lgatK-'
U, = - 'K- ,J

fK- IK -  R (14)

-5-
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Figure 4: The effect of A on the gap distance.

The error in u is:

up U fK-1RZ K-1  jAK-1 'K-t R (15)
1gtJ-lg 1 Ag*K IgJ

Upon expanding the last term as a series, this becomes:

u - U, K-I -mO K- I K-R K-1 K-XU -1 K-lgg!K- (16)
gK- -1g)' A2(g g)F

Canceling the first two terms, dropping items in A with powers greater than one.

and taking norms of both sides (16) can be written as:

Dividing both sides by Ju. Ji, (17) is transformed to:X- ....R
UPyUs lt_ _ (18)

Simplifying, equation (19) is found:

IupL Us K1 K- RI KgKgR I-~- ~ (9

-6- +Ag1

. 'L " . . . .• " . , " ". "" ". " , ' .' ' _,, , ' . _,' " _" .'__ .. _. .",' .. _ .. -



For some constant a. this expression can be written as: ,.

II.,.,
u1 - g,,a-- (20)

In practice, for a reasonably large A, a has a value near unity.

--4

.0

0

00

0

Log (Penalty Value)

Figure 5: The effect of A on the condition number.

A standard approximation for rounding errors is given in [5] as an expres-

sion of the form:

: b2-cond(K) (21)up
where uf represents the result computed using finite precision arithmetic, u..

identifies the result computed if exact arithmetic is used. The symbol b

represents some constant, while t represents the number of binary digits of
floating point precision. On the DEC VAX* series of computers, using double

precision instructions, t has a value of 56. An approximation for the condition

number of the system matrix K is:

cond(K) - (22)

here, Kj, is smallest diagonal stiffness matrix coef.cient that is in the contact

' VAX is a trademark of the Digital Equpment Corporaton,

-7-
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region. Hence, the total error is represented by summing both, as in equation

(23).

1+ + b 2- (23)

Differentiating this expression and setting it equal to zero, the minimum is:

2a , " (24). ~~~b 2-9 ]' e,-.

Assuming that the following approximation holds: -.

Ie-1 t' (25)

equation (24) then becomes:

(26)

for some constant c. In practice. c has a value near unity when I is reasonably

large. Equation (26) represents a recommendation for the penalty value, within

the limitations presented in its derivation.

To summarize, penalty methods have several advantages. Despite the con-

ditioning and accuracy problems, the resulting solution requires no extra

efforts beyond adding the contact components to the stiffness matrix. Further-

more, these methods are easy to implement and have a certain intuitive appeal

to engineers. Finally, the contact force conjugate to the contact constraint,

although not explicitly found by this method, can be computed using an extra

procedure.

2.2. The Lagrange Multiplier Method

The classical Lagrange methods were among the first methods used to solve

contact problems. With this method, the functional of equation (2) is amended

with an additional term. This defines the new system listed in equation (27).

n'OW = 1f(u) + A, g'u (27)

Taking the variation of (27) yields the following two equations:

6uKu - 6u'R + 6ugX = 0 (28.a)

d\g =0 (28.b)

By the fundamental lemma of variational equations, this leads to the system:

* ~Kgiru ~R1 (29)

-1 8- ..
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The set of equations expressed by equation (29) may be indefinite but J,

non-singular [2]. Unlike the standard penalty method, the dimensions of the

matrices increase with this approach. Additionally, as illustrated by equation

(29). the matrix contains a zero sub-matrix along its diagonal. In a practical

finite element system, these zero diagonal terms are not automatically available V
in a sub-matrix, but are scattered throughout the system stiffness matrix.

Thus, care must be exercised when the solution is found; special procedures

should be used which effectively re-order the system of equations.

Despite these disadvantages, classical Lagrange multiplier methods allow ..

the contact conditions to be satisfied exactly. Also. the A value has a straight-

forward physical significance; it is the value of the contact force conjugate to

the constraint condition.

An illustration of how the classical Lagrange method is used in contact
problems is demonstrated by again considering the two spring problem. Apply-

ing equation (29). the linear system of equations can easily be found:12k -k 1/ ii
-k k 11 qJ(30)[2 -k11~i 0b 

*

This system has the solution: .,n

k
U2 (31)

The results are the exact values for the displacement and contact force.

2.3. The Perturbed Lagrangian Method

An interesting extension to the classical Lagrange method is offered in
references [6] and [7]. Here the functional described by equation (27) is

modified with an additional term:

1T~A)= la)+.X Agu - -A tA, where: As>0 (32)

The effect of the last term is to fill in the zero sub-matrix of equation (29).
The resulting stiffness matrix no longer contains the zeros along the diagonal.

the classical Lagrange functional is recovered by allowing IA--. Superficially, it
might be observed that this approach still suffers from one problem of the clas-

sical Lagrange method: an increase in the number of degrees of freedom of the

system. However. this problem can be circumvented in a clever manner when

... , ,,.,".'.,'. .,% ..' '.' -,_-.- ../ , ,. ./ . .. . /. .. .-.. . .-.. . . -,., . .,, ,". . ,...-., .-
9-,, 

,' '



the method is applied to finite element systems. To see how this may be done,

consider the first variation of equation (32).

6uCu -6u]R + fk6u'g d- = 0 (33.a)

dX -~+ g'ulda = (33.b)

Where the integral extends over the area of contact between the two bodies.

Since 6A is arbitrary and it is a given constant, equation (33.b) can be written

as:

Ad fud (34)

In the framework of finite element analysis, the displacement field is generally .

approximated over each element region by some polynomial. If this approxima-

tion is linear, the strain field is constant function. Thus assuming that the con-

tact force, A, is constant over the region of interest, the above expression can

be transformed to:

A= f g~ud- (35)

A.

Because of the linear approximation, the integral can be evaluated by means of

the trapezoidal rule. Hence, . can be approximated to:

A = ug'U (36)

The point of this exercise is that equation (33.a), after applying the funda-

mental lemma of variational equations, becomes the expression presented in

equation (37).

Ku- R + gA = 0 (37)

Applying the results of (36), a new expression is found.

Ku-R + /gu= 0 (38)

Thus, the two equations in (33) can be reduced to a single system that does not

increase the number of degrees of freedom. Equation (38) is essentially that of

equation (7). except for the following points. First, an explicit expression for

the contact force is directly available through the use of equation (36). Second,

while a solution is sought, using the Lagrange approach. to the following:

,mnimz: fI(u) (39.a)

un'th the constraint: eu = 0 (39.b)

What instead is obtained by using the perturbation is:

-10-
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minimize: Iu)(40.a)

with the constraint: eu - = 0 (40.b)AS

Clearly, one can see that the solutions are equivalent only as u-ow, but as was

seen in the standard penalty approach, increasing 1A leads to numerical

difficulties.

Again, the two spring problem is presented within the context of the per-

turbed Lagrangian method in order to illustrate how it may be applied to finite

element systems. The system of linear equations is:

12k +ju -(k + M)I 
1  11

k~p, J~u2 ~jqj(41) '*

This has the solution:

=~ - q (42)" :'

Note that as ,-. the exact solution is found.

2.4. The Augmented Lagrangian Method

Until now, the methods considered have had some considerable implemen-
tation drawbacks. The penalty and perturbed Lagrangian methods had solu-

tions which are highly dependent on the penalty parameter /. Although it is

possible through the use of an expression like that presented in equation (26)

to get a reasonably good value for p based on conditioning considerations, such

a value says nothing about how accurate a given solution might be. Moreover.

the classical Lagrange method, while it promises the exact results, requires that

the resulting larger system of equations effectively be re-ordered during the

solution of the system. One might ask if it is possible to develop a method
which, while retaining a relatively easy implementation, minimizes Lhe disadvan-

tages of the penalty and Lagrange methods. To this end, consider the following

functional in equation (43).

rI*(xL.\) = fl(u) + A g8u + .ut gg' u, where: >O0 (43)

Equation (43) can be viewed as a classical Lagrangian method: '

minimize: fl(u) + -ut gg, u (44.a)

with the contraint: gu = 0 (44.b)

-11- -



because the addition of the penalty term to equation (44.a) does not change the
optimal values of u or the Lagrange multipliers X. Also, note that the system

can also be seen from the penalty viewpoint:

minimize: [[Cu) + A'&S (45.a)

with the constraint: glu = 0 (45.b) P

Observe that, if the correct values of the Lagrange multipliers X" are used,

equations (45) can be written:

minimize: rl(u) + (.X)Agu (46.a)

uwth the constraint: e u = 0 (48.b)

Or. by applying the penalty approach: JI

=rIX Il(u) + (X*ygeu + &uiggtu (47)
2

Taking the first variation of equation (47) and noting that since A" is the exact
value, the result must be equal to zero:

6u'Ku - 6u!R + 6utgA" + i6u t gg'u =0 (48.a) C .

(6.g)Ieu = 0 (48.b)

Since 6ui and (6A')' are arbitrary, equations (48) have the solution:

Ku-R+gA=0 (49.a)

gu = 0 (49.b)

The formulas (49) represents a set of equations for an ezct penalty method.

For details on exact penalty methods, see [3].

Since the correct values of A are not known in advance, a procedure must
be developed to find them, if the functional of equation (43) is to be of any use.

Until now, the algorithms developed did not require iteration if the contact area
between the two bodies remained constant. With the augmented Lagrangian

method, an iteration is required to compute the correct values of u and A. At

first this procedure might seem to be at a disadvantage, since extra computa-
tion is required. However, as will be shown, there are several advantages to this
approach. The system can yield a value for X within a given tolerance, and
hence, u can be computed to a specified value. This did not occur with the
penalty or perturbed Lagrangian methods. Second, the number of equations of

the system does not increase. This was not the case in the classical Lagrangian

method. Third, convergence to a specified value does not require that js-f.

This can help mitigate the severe conditioning problems associated with using a
large penalty value. Fourth, and most important, in finite element problems,
the contact area is generally not known in advance. This area must be found as
the solution progresses. Hence, an iterative procedure is always necessary for

-12- 7
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the finite element solution by the penalty, Lagrangian, and perturbed Lagran- K"
gian methods previously presented.

A first order update method for X can be written as in equation (50).

A+, = A + Igu (50)

The motivation for such an updating scheme can be found if equation (45) is

written as:

nimimize: 1(u) + Ajgu (S.a)

iuith the constraint: gu = 0 (51.b)

Viewing this from a Lagrange standpoint:

I(u) + 4gu + ("-A*), gu = 0 (52)

A typical step in the augmented Lagrangian method involves the minimization

of:

n(u) + u+ au'ggeu= o (53)

So. comparing equations (52) and (53), a good approximation is:

I~egu x ° - x. (54)

Rearranging terms, At+1 is found.

Xtl =A*= + Aglu (55)

This is exactly the updating method proposed by equation (50).

Considering the two spring problem described in Figure 3 for the aug-

mented Lagrangian method, the following system of linear equations results:

12k + ju .-(k + A,)l2l r01 11 (
k+ k~S) +A I1I1 Iq - 1]

Note that in this example, X is one dimensional and that. initially it is set to

zero.

X0= 0 (57)

So. the equation to update A is simply:

A+l = Xt + 1A (Ul -U2) (58)

Solving the linear system, and updating the value of X leads to the following

series of equations.

A -# (59.a)
k +j

__\2+ (59.b)

-13-
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11 1-4 + r (59.c)

Or. in general, equations (59) can be written as:

. + + (60)

This has the form
= go(1+a a+ 2 + ...... a n - ) (61)

for the following substitutions: 5

= -a k (62)

An infinite geometric series, this converges to:

~ ~ 1 1= -q(63)
a]=-iIik +

A requirement for convergence is that:

I I k
jai< 1 or -.- < 1 (64)

Therefore, it is seen that this system will converge for any positive value of A.&.

At convergence, the displacements can easily be found as:

1r 1 1
A" 2 ~-M(85)

These values represent the exact result.

For a detailed convergence proof of the augmented Lagrangian method in

the general case, see [3]. The example previously presented displays the power

of the method for the following reasons. First, convergence to a specified toler-

ance is found without requiring IA-cv. Second. the correct displacements and

contact forces are available without the need for extra calculations. Also note
that. in practice, the penalty parameter does not have to be held fixed during

the iteration: it can slowly increase as the solution nears convergence. Third.

the burden of accuracy does not depend directly on A but rather on the

number of iterations used to compute A. Furthermore, the algorithm does not

have to be run until A# is found, but rather it needs only to be computed until A
is within a specified tolerance of A*. Finally, each iteration leads to an

-14-
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improved estimate of the solution.

In order to study further the convergence properties of this method, the

duality viewpoint of equation (43) will be examined. Recall that duality means

that the functional which results from the problem:

minimize: nlU) + U, gl U (66.a)

with the contstraitnt: gl = 0 (86.b)

will lead to the system of equations:

Ku - R + (')tg + . u =0 (67)

when the Lagrange approach is used. By invoking a convexity assumption on

the Hessian of equation (67), an equivalent dual problem can be written:

g(= minimum {(u) + vAeu + Y-Uta (68)

Specifically, the dual function is used since it is a function of only one variable,

A. and hence there is a corresponding simplification in the problem statement.

The dual problem requires that the Hessian of the solution of the solution to

equations (66) be positive definite: this is a convexity assumption. Note that

from the results of the penalty method, and in fact from the results of Figure 1,

the problem is locally convex near the solution point for a reasonably large

value of p. Also worth noting is that equation (68) is not used in the solution to

the finite element problem since the minimization requires a solution of an

unconstrained problem in terms of the unrknoum displacements. Updating

schemes for u corresponding to equation (50) are much more difficult to

develop and use.

Using f(x(A)) to represent the standard finite element system. h(x(X)) to

represent the constraint, and x(X) as the vector which minimizes equations

(66). the dual of equation (68) can be written as:

d (X) = f (x(X)) + A h(x(X)) + -8hl (x())h(x(k)) (69)
2

Equation (89) has the gradient:

Vd(A) = V\x(A.){V (x(A)) + V.h(x(AL))A + /uV.h(x(A))h(x(A)) + h(x(A)) (70)

h h(x(A))

The term in braces vanishes at the stationary point, because it corresponds the

first variation of the functional given by equation (45). The Hessian of the dual

is* now calculated in order to examine the convergence properties of the

-15- ,
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augmented Lagrangian method. or

V2 d =V,\x(Ak)V. h(x(X)) (71)

If the term in braces of equation (70) is described as:

VL(x(,).A) = V=f(x(A)) + \,V 3 h(x(.X)) +/,V~h(x(A))h(x(k)) = 0 (72)

then. upon differentiating this expression one finds (73).

V\x()VLL(x().X) + V;L(x(X),A) =0 (73)

Equation (73) can be further simplified to:

VZx()VL(x(A),) + Vh*(x(A)) = 0 (74),4

Finally, V\x(X) can be found by solving equation (74).

VZx() = -Vh'(x(X))V2L-(x(X).A) (75)

Substituting this result into equation (71), the Hessian is listed in (76).

V2d(A) = -v h'(x(A))VL-'(x().A) (76)

= -Vzh t (x(Ak))IV f(x(A)) + /LV h(x(A))V.hl (x(X))Vah(x(X))

The steepest ascent formula for maximizing d(X) of equation (69) can be
written as:

= + aVd(Xt) (77)

Or. by substituting the results of (70), equation (77) becomes:

Ak+1 = kk + ah(x(Xt)) (78)

And, from reference (3], a relationship between the values of X and the conver-
gence ratio is:

Ak'l \0 tcr(,A max(I-W~-w (79)

Where W is the maximum eigenvalue of V'd(k), w is the minimum eigenvalue of

V'd (A), the function r(1A) is the convergence ratio and jA* is the optimal value of
IA. This optimal value can be computed to be:

A*- 2 (60)

And, the convergence ratio at that value is:

r * - (61) ::'

Similarly. the Hessian of the primal function can be computed to be:

~-16-
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V2 p (U) h(x(u))!Vz + xu))j Vh(x(u)) (82) P

Substituting and simplifying, the Hessians of both the dual and primal function-

als become:

V~d X) -t PC+ Agt g(83)

V2p (u) = [[K+ .(gg ] -Ai (84)

Next, consider the following rank one update formula:

Ale (K + Ag)-'g = I - (I + Ag'-K-1g)- (85)

Multiplying both sides by (I + ji g,=Kg) on the right leads to equation (86).

j(K + Age)-g(I + gtK-'g) =jg t K-Kg (85)

Suppose e is an eigenvector of gIK-g with an eigenvalue a. Post-multiplying

equation (86) by e and simplifying, it can be written as equation (87).

A.gt (K +/ gg')-g(1 + As)e = jae (87)

This equation has the form:

MA(i + Aa)e = e (88.a)

or:

.Ake= ae (88.b)

So. e is also an eigenvector of A. Thus gt (K + jgg')-Ig and gt K'g have the same

eigenvectors. Using this information in equation (87) and the symbol b to

represent and eigenvalue of g (k + juggt)-g, a relationship between eigenvalues

a and b can be written:

b(I +/s) = a (89.a)

or:

b (89.b)I +a

By substituting these values, the convergence ratio is:

+A

(90)
A

WW
-1?-
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Clearly, as A--. the convergence ratio goes to unity, implying arbitrarily

fast convergence. By application of the analysis of the penalty method, it is

known that from equations (13) to (26). rounding errors also play a part. Thus,

a tradeoff situation has developed. Although increasing the penalty parameter

increases the rate of convergence, it also leads to more poorly conditioned set

of equations. Since the augmented Lagrangian will converge, within certain res-

trictions, for any value of the penalty parameter it is clear that "best" value to

use is the one which will minimize the rounding errors. Thus, this optimal value -

for the penalty parameter A has exactly the same form as equation (26).

As a further justification for the first order update given by equation (50).
consider the application of Newton's method, and an approximation to the Hes-

sian of the dual functional. The value of A*+, can be thought of as minimizing

the second order expansion of the dual around A*:

d (A) = d(A*) + Vd'( )(A - A) - )'v ( )-Ak) (91)

Taking the derivative and setting it equal to zero:

V4(x)= vd( ) + V d (A)(, - A= 0 (92)

This leads to the update formula:

= - [2(A*)j Vd (Xj (93)

By equation (70). Vd(A*) is known, and from equation (76) V2 d(At) is also

known. Equation (83) represents the system of equations for the contact prob-

tem: this expression could be substituted into equation (93). As a further

simplification. note that for a reasonably large I.. equation (83) is approxi-

mately _-. Hence, equation (93) can be expressed as:

A t +I A* + + / g fU  (94)

This is exactly the method proposed in equation (50).

The augmented Lagrangian procedure can be interpreted geometrically in

Figure 6. Consider the primal functional given in equation (43). By addition of

the penalty term. the system is convex near the solution, u" , A* . For a given

set of starting values for uo and k the solution proceeds as follows. The value

of uk is found and is used to update the Lagrange parameter A+, . This value

corresponds to the negative slope of the functional at the point ut . The new
value of At,, is then used to compute a new ut+1 . This process may be contin-
ued until the values uk,, and Ak . are within a specified tolerance to u and A* .

,2--- .,-- -, . •. . .- ' '.-..-...., - ." ... '..----.*.. . .-.-... ... -.....--. . .. . . ..... .... ,- - -
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Figure 6: Grar hical interpretation of the augmented Lagrangian method.

3. Finite Element Implementation

The finite element method may be used to construct solution procedures

for the four contact schemes discussed in Section 2. In this section, only the

frictionless. two-dimensional, small deformation kinematics case will be

presented. Since the algorithms for the penalty and classical Lagrange

methods are so well known, the discussion of these methods will be confined to

their relationship with the augmented Lagrangian scheme. Details on the per-

turbed Lagrangian algorithm are given in references [8] and [7].

The augmented Lagrangian method has been implemented in the finite ele-

ment program FEAP [9]. Details of the contact kinematics can be found in []
and [7]. In these references, the contact interface is first split into a number of

segments along an intermediate surface, as shown in Figure 7. Assuming four

node isoparametric elements, these segments are unambiguously defined by the
geometry of the adjacent elements of the bodies in contact. Figure 8 shows a

typical segment.

.. . . . . . . . . . . . . . . . . . ..



--- BodyBod

Figure 7: Discretization into contact segments.

Variable Description

x) Element node on body i at nodej

ft Projection onto body i of x

Displacement of body i at node j

Projection onto body i of UJ)

n Normal to the contact segment on body

Table 1: A select list of variables and their description.

The notation in Table 1 is used to obtain the projection of contact segments

described in (95).

(I =(- ca')x, + ~ (95)

The variables in equation (95) are defined by:4..

(4-x?).t 1  (96.a) 'p

a 2 z 4)t (9 6.b)

-20-
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Figure 8: A typical contact segment. - '

a y- 2

= x (96.c)

From equations (96). the displacement can be described %s: ..--

And, hence, the gaps in the contact segments can be represented by: '

gl = (ul - u .n (gs.a) ">-

The normal n1' is defined by: ;,.-

= e ® t (99)

By applying a linear interpolation to the displacement field described by -"

equation (97), a consistent approximation is obtained with the four node iso- ,

parametric element. In the context of this approximation, the contact pressure ,.

within each segment is a constant. Note that this approach is not based on"-'-

nodal penetration of the adjacent body, but rather an avei-ege penetration ""°

h%% II

problem. the constraint is satisfied in an "average" sense over a segment,..

instead of "point-wise" for a contact node. By using the expressions in equation """

(98) for the interpolation functions g, in any of the equations (5), (27), (32) or .

X1.1

-21-
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(43) for glu, this averaging can be incrorated into the solution methods -

viously discussed.

Consider equation (5), which represents the penalty method. Assuming two

bodies in contact, the functional can be written as in equation (100).

r1(ul.u2 ) = rl(u') + fl(u 2) +.gS d (0)

Where the first two terms of equation (100) are of the same form as equation

(1):

l)= W(u) dv,- pb -u v, -f .u d", (101.a) "

nl(u2) - [W(u) dV - [pb.udv -1  .uda ,  (101.b)

By substituting equation (98) into equation (100). the following expression is

obtained:

17(u) =f(u) 2 1- fu -ufj.Eda (102)

The kinematically admissible variations are:

VI = I v '(0)-.R17. 1 d 1 = 0} (103.a)

2- V =,.(,)-R', n2 I 19B, = o (103.b)

Applying the Gateaux derivative to equation (102). and invoking stationarity:

dz

Dd.7 3 = rI(v + aj).=o. !-(vI + a'q1) + (104.a)D. dv a -".

.,.~~ ~ rj( 2 !-V 2 + ai )2) =0,.-

-22-
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Or. simplifying and combining these two equations the following expression is

obtained.

Applying the linear finite element discretization. equation (105) becomes:

aC i j0 (108) &
Where the first sum represents the standard contributions of stiffness and force

to the finite element system and the second sum represents the contact con-

straint contribution. The vector c can be expressed with reference to Figure 8

as follows.

01 -3( -a,) &, (107.a)

ca = +W( - aln') (107.b)

C = +(n' - a 2nF)  (107.6)

C4 = -X(1 - a2) n2  (107.d)

In equation (106), the sum is taken over all of the elements representing the

discretization of both bodies for the first term and the sum over all segments in

contact for the second term. A typical contribution of a contact element to the

system stiffness matrix can be described as:

C'

C4

Which, for each segment in contact, represents a rank one update to the system

stiffness matrix.

Some difficulties are present with this kinematic formulation, particularly
when higher order interpolations are used or an extension to three dimensions

-,: is made. The small deformation, linear kinematics implementation has a

-23-



reasonable geometrical definition, as described in Figures 7 and 8, for most

cases. However, the extension to multiple contact segments along a single slide

segment, or the general application of symmetric boundary conditions is

presently unclear. Figure 9 shows some problems that may arise even for the

four node case. Here, the interpolation method breaks down because proiec-

tions are not simple enough to be described by the application of of the method

shown in Figure 8.

Body 2

/ 1 intermediate

Body 1

IL

Figure 9: Possible problems with the slide line logic.

Furthermore, ambiguity arises in the case of higher order interpolations of

the intermediate surface. While this problem could be overcome by a complex

calculation, it is not clear that the test for penetration could be done efficiently.

For example, determining if a node is penetrating a body requires the use of a

concave clipping algorithm. For boundaries represented by polynomials greater

than first order, the calculation can be very expensive [10]. Moreover, in order

to extend this approach to three dimensions, techniques from constructive

solid geometry (CSG) would have to be employed. This means that the penetra-

tion calculations might generally take longer than the solution of the system of

equations for the entire finite element system [11].

The finite element implementation of the augmented Lagrangian method

can now be discussed in more detail. By applying the procedure given in the

last section to the functional expressed in equation (43). a finite element sys-

tem of the form of equations (106) can be derived. This system is shown in

equation (109.a) in matrix notation.

~fu" -r.14. uc u(ca)8u + ca1=0 (109.a)

-24-
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The equation for updating A can be written as:

+I= 4+ 4(c')'U (109.b)

Several features are worth repeating about equations (109). First. the

summation extends over all of the elements representing the discretization of

the bodies in contact. Second. the contact stiffness contribution is a rank one

update of the global stiffness matrix over each segment in contact. Third. the

method is inherently iterative because the Lagrange parameter is not known

before the solution is attempted. Fourth. the interpolation across a contact

segment is done in an "average" sense, rather than "point-wise." Finally. note

that even though the solution is iterative due to the nature of equation (109), it
i. is also not known in advance which segments are in contact: each loading_

configuration requires control logic based on the current values of the displace-

ments. Newton's method is used to solve equations (109). The solution pro-

cedure is outlined as Algorithm 1. -1

In practice, each contact segment has information containing the current

interpolation functions c. current Lagrange parameter A, and penalty value /.

Generally, the penalty value varies slowly from its original value to something

about ten to a hundred times larger as the solution converges. This has the

effect of tightening the constraint as the answer becomes better known while

keeping the solution reasonably well conditioned at the early stages.

The fact that the augmented Lagrangian method is a combination of both

the penalty and Lagrangian methods has already been shown. Depending on
ones viewpoint, it is relatively straightforward to extend or simplify Algorithm 1

to incorporate these cases. For the penalty method, the Lagrange parameters

can obviously be ignored, leading to a system of equations analogous to equa-

tion (109):

S(Vu- + je(,)'U = (110)

A similar procedure holds for the perturbed Lagrangian method, since equation -

(36) expresses a value for the Lagrange parameter across the contact segment.

Here, the step in Algorithm 1 which updates the Lagrange parameter may be

skipped since this item is considered constant across a given load

configuration.

Step (IL.D) in Algorithm 1 states that the exact value of X does not have to

be found. The user can select the desired precision. Furthermore, this preci-

sion is, unlike that of the penalty, classical Lagrangian or perturbed Lagrangian

methods, independent of the penalty value. This penalty value, by the results of

section 2.4. governs the rate of convergence of the augmented Lagrangian

method. It is generally expected that results to machine precision can be

-25- _
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Static Augmented Lagranigian Method,

I. Set uO 0.k = 0

H. For k = 1. 2, 3, ... until convergence do:

A. Build the system K,'S and Rptem-

B. For s = 1 to S 8

1. Determine e , gs = (W)t1u

2. Check to see if the segment is in contact:

if v

then the segment is not in contact

else

a. Calculate the stiffness contribution: Ac = (e)tuk

b. Calculate the residual contribution: P-g,,j = -(AV' c.
c. Add the contact I s . P to system K.yag.m . RIpg.m

to get Yq.g . Rgom

C. Solve the system for the displacement increment:

Kgt~tw Au = A81- Kg0aw ulk

D. Check for convergence:

if KI t., uk - P I.ta < tolerance

then announce convergence and stop.

K Update the displacement field: uk4. = uk + Aut, 1

F. For s = i to Sj°,8 :

Update the Lagrange parameters: XC+1 = X + /A(c) tuk+j

G. Next k, go back to step II.

Algorithm 1: Description of the static augmented Lagrangian method.

obtained after only a few iterations.

Since the algorithm depends on determining the state of a contact segment

in step (II.B.2). it should be noted that the convergence properties discussed in

section 2.4 might not always apply. This is because, as segments change state

from "not in contact" to "in contact" or vice-versa, the tangent matrix becomes

discontinuous. For problems involving practical engineering applications, these

discontinuities last only during the initial iterations and the solution quickly

converges.

The augmented Lagrangian method can easily be extended to handle prob-

lems involving dynamic contact. Algorithm 2 presents a solution of the problem

-28-
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Dynamic Augmented Lagrangian Method

L Initialize 0. 0 o&j

n. For t = At. 2At. 3t. ... until Tjr, do:

A. Set uO. A0 = 0

B. For k = 1. 2. 3. ... until convergence do:

1. Build the system tiKnjgm, NMe,, and tl-,om

2. For s = 1 to S 8w do:

a. Determine e . g = ( u) u ,

b. Check to see if the segment is in contact: If >

then the segment is not in contact else

L Calculate the stiffness contribution: o,j, =A/cs(e')tu,

iL Calculate the residual contribution: R ,. 4 8 =

Iii. Add the contact I ,,g , lq t to system t'y ,,m , 1.wq m g-.

to get KRo0g . os.,

3. Build 9Kyflm, = Kem + aOMq..m

4. Calculate the residual:

Rdrm.= Potl -ig I °,u - t yaimay.[U, - £ - il - I

5. Solve the system for the displacement increment: g~nri Au =ifnw4

6. Update the current configuration: uq ,, = u; + Au,

7. Check for convergence:
= <1,if W&4 Kt1"t -tW..ij< oeacthen

a. announce convergence in k: 4 1*u = t+

b. Update the velocity and acceleration fields: .5-

1+1 a(l+U - iU) - ai - rzSU -

8I+1 = 4~ .e~ +a ..

c. Go back to step I.

9. For s = 1 to Si°t:,

Update the Lagrange parameters: A11 = A +/u(e)lut+.

10. Go back to to step I.B

Algorithm 2: Description of the dynamic augmented Lagrangian method.
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The parameters in Algorithm 2 are defined by:

a-0.50 
- 0.2510 +a 

(111)

IL =a = O a 2 = ! I 1L - a l-
o=p&t2 Pat p= 2' j= ' 6 'I 4

~a=A {--2eu=,t{j1-a} a7=a.6?

in the time domain by the Newmark method. Note that for linear elastic prob-
lems, steps which involve forming l and PI m.m could be moved out of the

loops in both Algorithms 1 and 2.

Below. the two spring problem is again considered for a suddenly applied

load. A comparison with the exact results in Figure 10 shows excellent agree- 5.

ment.

~2k +A -(k+) '

Ky*m=[-(k +ju) k +,I to(112

This system leads to the following collection of matrices:

~2,t+~ -(k +c A) 3 6'
K, ivn ""1-(k +.) k+A J+ 1 1 (113)

f 0 12k +,u -(k +

-Tfll -f [-I

1 1 *L

IT,"-' Il.1 L-11 .U,.11,1

The initial conditions are assumed to be:

U 21 7 (115)

Furthermore. the system constants are taken to be: %

a k 1 -.1 (11)

2 4
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Figure 10: Comparison of exact and augmented Lagrangian results.

4. Examples

This section contains examples of the augmented Lagrangian solution

method for both the static and dynamic cases. The examples presented here

are compared to work done by previous researchers. In particular, the aug-

mented Lagrangian method is compared to the results of references [6] and [7]
for the perturbed Lagrangian approach, reference (15] for the dynamic case

and reference [14] for the Hertz solutions.

The augmented Lagrangian method was applied to the system of a rigid
punch into an elastic foundation, illustrated in Figure 11. The finite element

mesh is successively refined in order to get an idea on the convergence charac-

teristics of the system. Using information from reference [7], the following

parameters were used:

Zp.h = 108 ",,.m = 0.0 E, , " 105 Y fdi' = 0.3 (117.a)

Lp=. = 20 = 58 Dm. = 22 (117.b)
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Figure 11: Rigid punch into an elastic foundation. ...
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Figure 13: Comparison of converged results for the 3 element mesh.

Figures 12 and 13 display the results of applying the penalty, perturbed

Lagrangian and augmented Lagrangian methods to the three block problem.

Figure 12 shows the results after 1 iteration of each of the methods. Note that

the augmented Lagrangian method gives accurate results over a much wider
range of penalty parameter values. The converged results are shown in Figure-

13. In this case, the augmented Lagrangian approach always yields the correct

results, while the other methods only approximate the solution for smaller

penalty values. Table 2 displays the comparison on the number of iterations for

the three methods, using a penalty value of jA = 10?. Observe that even though

the solutions are improved over the standard penalty and perturbed Lagran-

gian methods, the values in Table 2 show that little extra work is required.

Method Mesh 1 Mesh 2 Mesh 3

penalty 3 6 5 ., '"

perturbed Lagrangian 2 4 6 .

augmented Lagrangian 2 4 6'-..

Table 2: Iteration results for the rigid punch problem
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Figure 14: Finite element mesh for the Hertz contact problem.

In order to further illustrate the augmented Lagrangian method, the finite

element system in Figure 14 was studied. This mesh represents a sphere in con-

tact with a rigid wall. The parameters for this system are:

E = 10s v0.3 p=O.O R=8.0 (118)

The study of a static analysis involved three different load values applied to the

top of the sphere. Results of the loading, compared to the classical Hertz solu-

tion are illustrated in Figure 15. An iteration count comparing the three

methods can be found in Table 3. Each of these method used a penalty value of

= 107. A dynamic analysis was also carried out, assuming that the sphere was
given an initial velocity of 0.1 downward. -The results displayed in Figure 16

represent the maximum impact values. In this dynamic analysis, only the aug-

mented Lagrangian method obtained reasonable results.

Method iterations

penalty 6

perturbed Lagrangian 5

augmented Lagrangian 8

Table 3: Iteration results for the Hertz contact problem.
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Figure 15: Static results for the Hertz contact problem.
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Figure 16: Dynamic results for the Hertz contact problem.
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5. Recommendations for further work

This section contains a List of possible extensions to the solution method
and its associated algorithms. In particular, proposals are made which would

improve the rate of convergence of the algorithm, make the slide line computa- MN

tions more efficient and extend the algorithm to cover new problem domains.

Using equation (93), a second order updating scheme could be added to

the augmented Lagrangian method. By comparing equations (83) and (84). the
following scheme could be developed.

+2dd()]-' = V2p (u) + Al (119)

Thus, the iteration corresponding to equation (93) is obviously:

A*+IXt+ (V2p (u) + ,A1)Vd(X, (120)

As the computation proceeds, values are found for p (u) and Vp (u) = A* + /L1L

These values could then be used to generate an approximation to V2p (u). The

need to use second derivatives is eliminated entirely if one chooses to solve the
contact problem by some quasi-Newton methods such as the DFP or BFGS. See
reference [4] for more details on these methods.

A further enhancement might be to extend the slide line contact logic. As

was mentioned in Section 3. the logic is not well defined when multiple segments

are in contact with a single surface. For four node isoparametric elements, the
extension is straightforward. However, an extension to cover three dimensional
problems would entail the use of a clipping algorithm to determine if segments
were in contact. Essentially, the algorithm is cubic in the number of nodes for

this case, but if linear elements are used, a proper implementation could
reduce the required computation significantly. The extension to cover higher

order elements is less clear. It is believed, however, that by using techniques
from constructive solid geometry and exploiting the convex hull properties of

the finite element mesh, a reasonably efficient method could be developed.

A third area which needs further work is the development of algorithms
which include friction on the contact surface. In particular, methods which
develop consistent tangent matrices need to be devised. The addition of fric-
tional contact to the algorithms presented here would greatly enhance their

generality.

Finally. the contact algorithms should not be limited to small deformation
kinematics. All of the solution efforts that have been described here need to be
evaluated for situations in which motions on the contact surface are finite.
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6. Summary and Conclusions N

An augmented Lagrangian method for the solution finite element contact

problems offers several advantages over the standard penalty, classical Lagran- "-
gian or perturbed Lagrangian methods. By using the augmented Lagrangian
method, the user has direct control over the accuracy of a given problem, since -
it is the number of iterations that control the tolerance of the solutions. The
value of the penalty parameter controls the rate of convergence. Expressions
have been presented, based on error considerations, which may be used as a Pr
guide to selecting a reasonable penalty parameter.

The algorithm for the augmented Lagrangian method can be simplified to
incorporate both the standard penalty and perturbed Lagrangian Methods.
Furthermore, this method is applicable to both static and dynamic problems.
The results presented in section 4 show that the method compares very well to
work done by previous researchers. Convergence is quite fast, even in cases
where the other methods fail.
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